MakeItFrom.com
Menu (ESC)

EN 1.4655 Stainless Steel vs. CC140C Copper

EN 1.4655 stainless steel belongs to the iron alloys classification, while CC140C copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4655 stainless steel and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 23 to 25
11
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 78
44
Tensile Strength: Ultimate (UTS), MPa 720 to 730
340
Tensile Strength: Yield (Proof), MPa 450 to 480
230

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 1050
200
Melting Completion (Liquidus), °C 1420
1100
Melting Onset (Solidus), °C 1370
1040
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
310
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
77
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
78

Otherwise Unclassified Properties

Base Metal Price, % relative 15
31
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 41
41
Embodied Water, L/kg 160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 160
34
Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 580
220
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 26
10
Strength to Weight: Bending, points 23
12
Thermal Diffusivity, mm2/s 4.0
89
Thermal Shock Resistance, points 20
12

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22 to 24
0.4 to 1.2
Copper (Cu), % 1.0 to 3.0
98.8 to 99.6
Iron (Fe), % 63.6 to 73.4
0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0.1 to 0.6
0
Nickel (Ni), % 3.5 to 5.5
0
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0