MakeItFrom.com
Menu (ESC)

EN 1.4655 Stainless Steel vs. C18400 Copper

EN 1.4655 stainless steel belongs to the iron alloys classification, while C18400 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4655 stainless steel and the bottom bar is C18400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 23 to 25
13 to 50
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 78
44
Shear Strength, MPa 460
190 to 310
Tensile Strength: Ultimate (UTS), MPa 720 to 730
270 to 490
Tensile Strength: Yield (Proof), MPa 450 to 480
110 to 480

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 1050
200
Melting Completion (Liquidus), °C 1420
1080
Melting Onset (Solidus), °C 1370
1070
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
320
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
80
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
81

Otherwise Unclassified Properties

Base Metal Price, % relative 15
31
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 41
41
Embodied Water, L/kg 160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 160
63 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 580
54 to 980
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 26
8.5 to 15
Strength to Weight: Bending, points 23
10 to 16
Thermal Diffusivity, mm2/s 4.0
94
Thermal Shock Resistance, points 20
9.6 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Arsenic (As), % 0
0 to 0.0050
Calcium (Ca), % 0
0 to 0.0050
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22 to 24
0.4 to 1.2
Copper (Cu), % 1.0 to 3.0
97.2 to 99.6
Iron (Fe), % 63.6 to 73.4
0 to 0.15
Lithium (Li), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0.1 to 0.6
0
Nickel (Ni), % 3.5 to 5.5
0
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.035
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 0.7
Residuals, % 0
0 to 0.5