MakeItFrom.com
Menu (ESC)

EN 1.4655 Stainless Steel vs. C68400 Brass

EN 1.4655 stainless steel belongs to the iron alloys classification, while C68400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4655 stainless steel and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23 to 25
18
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 78
41
Shear Strength, MPa 460
330
Tensile Strength: Ultimate (UTS), MPa 720 to 730
540
Tensile Strength: Yield (Proof), MPa 450 to 480
310

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 1050
130
Melting Completion (Liquidus), °C 1420
840
Melting Onset (Solidus), °C 1370
820
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 15
66
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
87
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
99

Otherwise Unclassified Properties

Base Metal Price, % relative 15
23
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 41
47
Embodied Water, L/kg 160
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 160
81
Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 580
460
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 26
19
Strength to Weight: Bending, points 23
19
Thermal Diffusivity, mm2/s 4.0
21
Thermal Shock Resistance, points 20
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0.0010 to 0.030
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 1.0 to 3.0
59 to 64
Iron (Fe), % 63.6 to 73.4
0 to 1.0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 2.0
0.2 to 1.5
Molybdenum (Mo), % 0.1 to 0.6
0
Nickel (Ni), % 3.5 to 5.5
0 to 0.5
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.035
0.030 to 0.3
Silicon (Si), % 0 to 1.0
1.5 to 2.5
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
28.6 to 39.3
Residuals, % 0
0 to 0.5