MakeItFrom.com
Menu (ESC)

EN 1.4655 Stainless Steel vs. N12160 Nickel

EN 1.4655 stainless steel belongs to the iron alloys classification, while N12160 nickel belongs to the nickel alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4655 stainless steel and the bottom bar is N12160 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 23 to 25
45
Fatigue Strength, MPa 320
230
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 78
80
Shear Strength, MPa 460
500
Tensile Strength: Ultimate (UTS), MPa 720 to 730
710
Tensile Strength: Yield (Proof), MPa 450 to 480
270

Thermal Properties

Latent Heat of Fusion, J/g 290
360
Maximum Temperature: Mechanical, °C 1050
1060
Melting Completion (Liquidus), °C 1420
1330
Melting Onset (Solidus), °C 1370
1280
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
11
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 15
90
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.9
8.5
Embodied Energy, MJ/kg 41
120
Embodied Water, L/kg 160
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 160
260
Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 580
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 26
24
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 4.0
2.8
Thermal Shock Resistance, points 20
19

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.15
Chromium (Cr), % 22 to 24
26 to 30
Cobalt (Co), % 0
27 to 33
Copper (Cu), % 1.0 to 3.0
0
Iron (Fe), % 63.6 to 73.4
0 to 3.5
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 0.1 to 0.6
0 to 1.0
Nickel (Ni), % 3.5 to 5.5
25 to 44.4
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0 to 1.0
2.4 to 3.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0
0.2 to 0.8
Tungsten (W), % 0
0 to 1.0