MakeItFrom.com
Menu (ESC)

EN 1.4658 Stainless Steel vs. 5254 Aluminum

EN 1.4658 stainless steel belongs to the iron alloys classification, while 5254 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4658 stainless steel and the bottom bar is 5254 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 28
3.4 to 22
Fatigue Strength, MPa 530
110 to 160
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 580
150 to 200
Tensile Strength: Ultimate (UTS), MPa 900
240 to 350
Tensile Strength: Yield (Proof), MPa 730
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1400
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 4.5
8.8
Embodied Energy, MJ/kg 61
150
Embodied Water, L/kg 200
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
11 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
73 to 550
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 32
25 to 37
Strength to Weight: Bending, points 26
32 to 41
Thermal Diffusivity, mm2/s 4.3
52
Thermal Shock Resistance, points 24
10 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
94.4 to 96.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 26 to 29
0.15 to 0.35
Cobalt (Co), % 0.5 to 2.0
0
Copper (Cu), % 0 to 1.0
0 to 0.050
Iron (Fe), % 50.9 to 63.7
0 to 0.45
Magnesium (Mg), % 0
3.1 to 3.9
Manganese (Mn), % 0 to 1.5
0 to 0.010
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 5.5 to 9.5
0
Nitrogen (N), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.5
0 to 0.45
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15