MakeItFrom.com
Menu (ESC)

EN 1.4658 Stainless Steel vs. 6025 Aluminum

EN 1.4658 stainless steel belongs to the iron alloys classification, while 6025 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4658 stainless steel and the bottom bar is 6025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 28
2.8 to 10
Fatigue Strength, MPa 530
67 to 110
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 580
110 to 140
Tensile Strength: Ultimate (UTS), MPa 900
190 to 240
Tensile Strength: Yield (Proof), MPa 730
68 to 210

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1400
550
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 4.5
8.5
Embodied Energy, MJ/kg 61
150
Embodied Water, L/kg 200
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
6.0 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
33 to 310
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 32
19 to 24
Strength to Weight: Bending, points 26
26 to 31
Thermal Diffusivity, mm2/s 4.3
54
Thermal Shock Resistance, points 24
8.2 to 10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91.7 to 96.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 26 to 29
0 to 0.2
Cobalt (Co), % 0.5 to 2.0
0
Copper (Cu), % 0 to 1.0
0.2 to 0.7
Iron (Fe), % 50.9 to 63.7
0 to 0.7
Magnesium (Mg), % 0
2.1 to 3.0
Manganese (Mn), % 0 to 1.5
0.6 to 1.4
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 5.5 to 9.5
0
Nitrogen (N), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.5
0.8 to 1.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.15