MakeItFrom.com
Menu (ESC)

EN 1.4658 Stainless Steel vs. AWS ER80S-B8

Both EN 1.4658 stainless steel and AWS ER80S-B8 are iron alloys. They have 69% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4658 stainless steel and the bottom bar is AWS ER80S-B8.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 28
19
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 81
75
Tensile Strength: Ultimate (UTS), MPa 900
630
Tensile Strength: Yield (Proof), MPa 730
530

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
26
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 25
6.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.5
2.0
Embodied Energy, MJ/kg 61
28
Embodied Water, L/kg 200
89

Common Calculations

PREN (Pitting Resistance) 49
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
720
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32
22
Strength to Weight: Bending, points 26
21
Thermal Diffusivity, mm2/s 4.3
6.9
Thermal Shock Resistance, points 24
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 26 to 29
8.0 to 10.5
Cobalt (Co), % 0.5 to 2.0
0
Copper (Cu), % 0 to 1.0
0 to 0.35
Iron (Fe), % 50.9 to 63.7
85.6 to 90.8
Manganese (Mn), % 0 to 1.5
0.4 to 0.7
Molybdenum (Mo), % 4.0 to 5.0
0.8 to 1.2
Nickel (Ni), % 5.5 to 9.5
0 to 0.5
Nitrogen (N), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.025
Residuals, % 0
0 to 0.5