MakeItFrom.com
Menu (ESC)

EN 1.4658 Stainless Steel vs. C443.0 Aluminum

EN 1.4658 stainless steel belongs to the iron alloys classification, while C443.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4658 stainless steel and the bottom bar is C443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
65
Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 28
9.0
Fatigue Strength, MPa 530
120
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 81
27
Shear Strength, MPa 580
130
Tensile Strength: Ultimate (UTS), MPa 900
230
Tensile Strength: Yield (Proof), MPa 730
100

Thermal Properties

Latent Heat of Fusion, J/g 300
470
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1400
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 16
140
Thermal Expansion, µm/m-K 13
22

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 4.5
7.9
Embodied Energy, MJ/kg 61
150
Embodied Water, L/kg 200
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
17
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
70
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 32
24
Strength to Weight: Bending, points 26
31
Thermal Diffusivity, mm2/s 4.3
58
Thermal Shock Resistance, points 24
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
89.6 to 95.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 26 to 29
0
Cobalt (Co), % 0.5 to 2.0
0
Copper (Cu), % 0 to 1.0
0 to 0.6
Iron (Fe), % 50.9 to 63.7
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0 to 0.35
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 5.5 to 9.5
0 to 0.5
Nitrogen (N), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.5
4.5 to 6.0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25