MakeItFrom.com
Menu (ESC)

EN 1.4658 Stainless Steel vs. C17465 Copper

EN 1.4658 stainless steel belongs to the iron alloys classification, while C17465 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4658 stainless steel and the bottom bar is C17465 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 28
5.3 to 36
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 81
44
Shear Strength, MPa 580
210 to 540
Tensile Strength: Ultimate (UTS), MPa 900
310 to 930
Tensile Strength: Yield (Proof), MPa 730
120 to 830

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1400
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 16
220
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Base Metal Price, % relative 25
45
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 4.5
4.1
Embodied Energy, MJ/kg 61
64
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
47 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
64 to 2920
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 32
9.7 to 29
Strength to Weight: Bending, points 26
11 to 24
Thermal Diffusivity, mm2/s 4.3
64
Thermal Shock Resistance, points 24
11 to 33

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.15 to 0.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 26 to 29
0
Cobalt (Co), % 0.5 to 2.0
0
Copper (Cu), % 0 to 1.0
95.7 to 98.7
Iron (Fe), % 50.9 to 63.7
0 to 0.2
Lead (Pb), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 5.5 to 9.5
1.0 to 1.4
Nitrogen (N), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.5
Residuals, % 0
0 to 0.5