MakeItFrom.com
Menu (ESC)

EN 1.4658 Stainless Steel vs. C85200 Brass

EN 1.4658 stainless steel belongs to the iron alloys classification, while C85200 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4658 stainless steel and the bottom bar is C85200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 28
28
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 900
270
Tensile Strength: Yield (Proof), MPa 730
95

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Maximum Temperature: Mechanical, °C 1100
140
Melting Completion (Liquidus), °C 1450
940
Melting Onset (Solidus), °C 1400
930
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 16
84
Thermal Expansion, µm/m-K 13
20

Otherwise Unclassified Properties

Base Metal Price, % relative 25
26
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 4.5
2.8
Embodied Energy, MJ/kg 61
46
Embodied Water, L/kg 200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
59
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
42
Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 32
8.9
Strength to Weight: Bending, points 26
11
Thermal Diffusivity, mm2/s 4.3
27
Thermal Shock Resistance, points 24
9.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 26 to 29
0
Cobalt (Co), % 0.5 to 2.0
0
Copper (Cu), % 0 to 1.0
70 to 74
Iron (Fe), % 50.9 to 63.7
0 to 0.6
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 5.5 to 9.5
0 to 1.0
Nitrogen (N), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.035
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.050
Sulfur (S), % 0 to 0.010
0 to 0.050
Tin (Sn), % 0
0.7 to 2.0
Zinc (Zn), % 0
20 to 27
Residuals, % 0
0 to 0.9