MakeItFrom.com
Menu (ESC)

EN 1.4658 Stainless Steel vs. C90900 Bronze

EN 1.4658 stainless steel belongs to the iron alloys classification, while C90900 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4658 stainless steel and the bottom bar is C90900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
90
Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 28
15
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 900
280
Tensile Strength: Yield (Proof), MPa 730
140

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1450
980
Melting Onset (Solidus), °C 1400
820
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 16
65
Thermal Expansion, µm/m-K 13
18

Otherwise Unclassified Properties

Base Metal Price, % relative 25
36
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 4.5
3.9
Embodied Energy, MJ/kg 61
64
Embodied Water, L/kg 200
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
35
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
89
Stiffness to Weight: Axial, points 15
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 32
8.8
Strength to Weight: Bending, points 26
11
Thermal Diffusivity, mm2/s 4.3
21
Thermal Shock Resistance, points 24
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 26 to 29
0
Cobalt (Co), % 0.5 to 2.0
0
Copper (Cu), % 0 to 1.0
86 to 89
Iron (Fe), % 50.9 to 63.7
0 to 0.15
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 5.5 to 9.5
0 to 0.5
Nitrogen (N), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.035
0 to 0.050
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.010
0 to 0.050
Tin (Sn), % 0
12 to 14
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.6