MakeItFrom.com
Menu (ESC)

EN 1.4662 Stainless Steel vs. Grade 28 Titanium

EN 1.4662 stainless steel belongs to the iron alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4662 stainless steel and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
11 to 17
Fatigue Strength, MPa 430 to 450
330 to 480
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 79
40
Shear Strength, MPa 520 to 540
420 to 590
Tensile Strength: Ultimate (UTS), MPa 810 to 830
690 to 980
Tensile Strength: Yield (Proof), MPa 580 to 620
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 1090
330
Melting Completion (Liquidus), °C 1430
1640
Melting Onset (Solidus), °C 1380
1590
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 15
8.3
Thermal Expansion, µm/m-K 13
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 16
36
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 3.2
37
Embodied Energy, MJ/kg 45
600
Embodied Water, L/kg 170
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 840 to 940
1370 to 3100
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 29 to 30
43 to 61
Strength to Weight: Bending, points 25
39 to 49
Thermal Diffusivity, mm2/s 3.9
3.4
Thermal Shock Resistance, points 22
47 to 66

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 0.1 to 0.8
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 62.6 to 70.2
0 to 0.25
Manganese (Mn), % 2.5 to 4.0
0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 3.0 to 4.5
0
Nitrogen (N), % 0.2 to 0.3
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.035
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
92.4 to 95.4
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4