MakeItFrom.com
Menu (ESC)

EN 1.4662 Stainless Steel vs. C69700 Brass

EN 1.4662 stainless steel belongs to the iron alloys classification, while C69700 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4662 stainless steel and the bottom bar is C69700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
25
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 79
41
Shear Strength, MPa 520 to 540
300
Tensile Strength: Ultimate (UTS), MPa 810 to 830
470
Tensile Strength: Yield (Proof), MPa 580 to 620
230

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 1090
160
Melting Completion (Liquidus), °C 1430
930
Melting Onset (Solidus), °C 1380
880
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 15
43
Thermal Expansion, µm/m-K 13
19

Otherwise Unclassified Properties

Base Metal Price, % relative 16
26
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 3.2
2.7
Embodied Energy, MJ/kg 45
44
Embodied Water, L/kg 170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
99
Resilience: Unit (Modulus of Resilience), kJ/m3 840 to 940
250
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 29 to 30
16
Strength to Weight: Bending, points 25
16
Thermal Diffusivity, mm2/s 3.9
13
Thermal Shock Resistance, points 22
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 0.1 to 0.8
75 to 80
Iron (Fe), % 62.6 to 70.2
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 2.5 to 4.0
0 to 0.4
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 3.0 to 4.5
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.7
2.5 to 3.5
Sulfur (S), % 0 to 0.0050
0
Zinc (Zn), % 0
13.9 to 22
Residuals, % 0
0 to 0.5