MakeItFrom.com
Menu (ESC)

EN 1.4736 Stainless Steel vs. AISI 405 Stainless Steel

Both EN 1.4736 stainless steel and AISI 405 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 93% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4736 stainless steel and the bottom bar is AISI 405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 28
22
Fatigue Strength, MPa 230
130
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 370
300
Tensile Strength: Ultimate (UTS), MPa 580
470
Tensile Strength: Yield (Proof), MPa 310
200

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 500
390
Maximum Temperature: Mechanical, °C 1000
820
Melting Completion (Liquidus), °C 1420
1530
Melting Onset (Solidus), °C 1380
1480
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 21
30
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
7.0
Density, g/cm3 7.6
7.7
Embodied Carbon, kg CO2/kg material 2.4
2.0
Embodied Energy, MJ/kg 35
28
Embodied Water, L/kg 140
100

Common Calculations

PREN (Pitting Resistance) 18
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
84
Resilience: Unit (Modulus of Resilience), kJ/m3 250
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
17
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 5.6
8.1
Thermal Shock Resistance, points 21
16

Alloy Composition

Aluminum (Al), % 1.7 to 2.1
0.1 to 0.3
Carbon (C), % 0 to 0.040
0 to 0.080
Chromium (Cr), % 17 to 18
11.5 to 14.5
Iron (Fe), % 77 to 81.1
82.5 to 88.4
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.2 to 0.8
0