MakeItFrom.com
Menu (ESC)

EN 1.4749 Stainless Steel vs. EN 1.4655 Stainless Steel

Both EN 1.4749 stainless steel and EN 1.4655 stainless steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4749 stainless steel and the bottom bar is EN 1.4655 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 16
23 to 25
Fatigue Strength, MPa 190
320
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 80
78
Shear Strength, MPa 370
460
Tensile Strength: Ultimate (UTS), MPa 600
720 to 730
Tensile Strength: Yield (Proof), MPa 320
450 to 480

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 450
440
Maximum Temperature: Mechanical, °C 1100
1050
Melting Completion (Liquidus), °C 1420
1420
Melting Onset (Solidus), °C 1380
1370
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 17
15
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
15
Density, g/cm3 7.6
7.7
Embodied Carbon, kg CO2/kg material 2.5
2.9
Embodied Energy, MJ/kg 36
41
Embodied Water, L/kg 160
160

Common Calculations

PREN (Pitting Resistance) 31
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 250
510 to 580
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
25
Strength to Weight: Axial, points 22
26
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 4.6
4.0
Thermal Shock Resistance, points 22
20

Alloy Composition

Carbon (C), % 0.15 to 0.2
0 to 0.030
Chromium (Cr), % 26 to 29
22 to 24
Copper (Cu), % 0
1.0 to 3.0
Iron (Fe), % 68.5 to 73.7
63.6 to 73.4
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0.15 to 0.25
0.050 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015