MakeItFrom.com
Menu (ESC)

EN 1.4749 Stainless Steel vs. Grade 19 Titanium

EN 1.4749 stainless steel belongs to the iron alloys classification, while grade 19 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4749 stainless steel and the bottom bar is grade 19 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 16
5.6 to 17
Fatigue Strength, MPa 190
550 to 620
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 80
47
Shear Strength, MPa 370
550 to 750
Tensile Strength: Ultimate (UTS), MPa 600
890 to 1300
Tensile Strength: Yield (Proof), MPa 320
870 to 1170

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
370
Melting Completion (Liquidus), °C 1420
1660
Melting Onset (Solidus), °C 1380
1600
Specific Heat Capacity, J/kg-K 490
520
Thermal Conductivity, W/m-K 17
6.2
Thermal Expansion, µm/m-K 9.6
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 13
45
Density, g/cm3 7.6
5.0
Embodied Carbon, kg CO2/kg material 2.5
47
Embodied Energy, MJ/kg 36
760
Embodied Water, L/kg 160
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 250
3040 to 5530
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
33
Strength to Weight: Axial, points 22
49 to 72
Strength to Weight: Bending, points 21
41 to 53
Thermal Diffusivity, mm2/s 4.6
2.4
Thermal Shock Resistance, points 22
57 to 83

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
3.0 to 4.0
Carbon (C), % 0.15 to 0.2
0 to 0.050
Chromium (Cr), % 26 to 29
5.5 to 6.5
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 68.5 to 73.7
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0
3.5 to 4.5
Nitrogen (N), % 0.15 to 0.25
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
71.1 to 77
Vanadium (V), % 0
7.5 to 8.5
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4