MakeItFrom.com
Menu (ESC)

EN 1.4762 Stainless Steel vs. ASTM B817 Type I

EN 1.4762 stainless steel belongs to the iron alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4762 stainless steel and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 13
4.0 to 13
Fatigue Strength, MPa 180
360 to 520
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 620
770 to 960
Tensile Strength: Yield (Proof), MPa 310
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1150
340
Melting Completion (Liquidus), °C 1410
1600
Melting Onset (Solidus), °C 1370
1550
Specific Heat Capacity, J/kg-K 490
560
Thermal Conductivity, W/m-K 17
7.1
Thermal Expansion, µm/m-K 10
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 12
36
Density, g/cm3 7.6
4.4
Embodied Carbon, kg CO2/kg material 2.5
38
Embodied Energy, MJ/kg 37
610
Embodied Water, L/kg 170
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 250
2310 to 3540
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
35
Strength to Weight: Axial, points 23
48 to 60
Strength to Weight: Bending, points 21
42 to 49
Thermal Diffusivity, mm2/s 4.6
2.9
Thermal Shock Resistance, points 22
54 to 68

Alloy Composition

Aluminum (Al), % 1.2 to 1.7
5.5 to 6.8
Carbon (C), % 0 to 0.12
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Chromium (Cr), % 23 to 26
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 69.7 to 75.1
0 to 0.4
Manganese (Mn), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.7 to 1.4
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4