MakeItFrom.com
Menu (ESC)

EN 1.4762 Stainless Steel vs. C19400 Copper

EN 1.4762 stainless steel belongs to the iron alloys classification, while C19400 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4762 stainless steel and the bottom bar is C19400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 13
2.3 to 37
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 78
44
Shear Strength, MPa 370
210 to 300
Tensile Strength: Ultimate (UTS), MPa 620
310 to 630
Tensile Strength: Yield (Proof), MPa 310
98 to 520

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1150
200
Melting Completion (Liquidus), °C 1410
1090
Melting Onset (Solidus), °C 1370
1080
Specific Heat Capacity, J/kg-K 490
390
Thermal Conductivity, W/m-K 17
260
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
58 to 68
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
58 to 69

Otherwise Unclassified Properties

Base Metal Price, % relative 12
30
Density, g/cm3 7.6
8.9
Embodied Carbon, kg CO2/kg material 2.5
2.6
Embodied Energy, MJ/kg 37
40
Embodied Water, L/kg 170
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67
5.5 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 250
41 to 1140
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 26
18
Strength to Weight: Axial, points 23
9.7 to 20
Strength to Weight: Bending, points 21
11 to 18
Thermal Diffusivity, mm2/s 4.6
75
Thermal Shock Resistance, points 22
11 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 1.2 to 1.7
0
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0
96.8 to 97.8
Iron (Fe), % 69.7 to 75.1
2.1 to 2.6
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0.015 to 0.15
Silicon (Si), % 0.7 to 1.4
0
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.2