MakeItFrom.com
Menu (ESC)

EN 1.4762 Stainless Steel vs. C23000 Brass

EN 1.4762 stainless steel belongs to the iron alloys classification, while C23000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4762 stainless steel and the bottom bar is C23000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 13
2.9 to 47
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
42
Shear Strength, MPa 370
220 to 340
Tensile Strength: Ultimate (UTS), MPa 620
280 to 590
Tensile Strength: Yield (Proof), MPa 310
83 to 480

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1410
1030
Melting Onset (Solidus), °C 1370
990
Specific Heat Capacity, J/kg-K 490
390
Thermal Conductivity, W/m-K 17
160
Thermal Expansion, µm/m-K 10
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
37
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
39

Otherwise Unclassified Properties

Base Metal Price, % relative 12
28
Density, g/cm3 7.6
8.6
Embodied Carbon, kg CO2/kg material 2.5
2.6
Embodied Energy, MJ/kg 37
43
Embodied Water, L/kg 170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67
6.2 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 250
31 to 1040
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 26
19
Strength to Weight: Axial, points 23
8.9 to 19
Strength to Weight: Bending, points 21
11 to 18
Thermal Diffusivity, mm2/s 4.6
48
Thermal Shock Resistance, points 22
9.4 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 1.2 to 1.7
0
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0
84 to 86
Iron (Fe), % 69.7 to 75.1
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.7 to 1.4
0
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
13.7 to 16
Residuals, % 0
0 to 0.2