MakeItFrom.com
Menu (ESC)

EN 1.4762 Stainless Steel vs. C68800 Brass

EN 1.4762 stainless steel belongs to the iron alloys classification, while C68800 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4762 stainless steel and the bottom bar is C68800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 13
2.0 to 36
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 78
41
Shear Strength, MPa 370
380 to 510
Tensile Strength: Ultimate (UTS), MPa 620
570 to 890
Tensile Strength: Yield (Proof), MPa 310
390 to 790

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1150
160
Melting Completion (Liquidus), °C 1410
960
Melting Onset (Solidus), °C 1370
950
Specific Heat Capacity, J/kg-K 490
400
Thermal Conductivity, W/m-K 17
40
Thermal Expansion, µm/m-K 10
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
18
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
20

Otherwise Unclassified Properties

Base Metal Price, % relative 12
26
Density, g/cm3 7.6
8.2
Embodied Carbon, kg CO2/kg material 2.5
2.8
Embodied Energy, MJ/kg 37
48
Embodied Water, L/kg 170
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67
16 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 250
710 to 2860
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 26
19
Strength to Weight: Axial, points 23
19 to 30
Strength to Weight: Bending, points 21
19 to 25
Thermal Diffusivity, mm2/s 4.6
12
Thermal Shock Resistance, points 22
19 to 30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 1.2 to 1.7
3.0 to 3.8
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 23 to 26
0
Cobalt (Co), % 0
0.25 to 0.55
Copper (Cu), % 0
70.8 to 75.5
Iron (Fe), % 69.7 to 75.1
0 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.7 to 1.4
0
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
21.3 to 24.1
Residuals, % 0
0 to 0.5