MakeItFrom.com
Menu (ESC)

EN 1.4805 Stainless Steel vs. EN AC-46000 Aluminum

EN 1.4805 stainless steel belongs to the iron alloys classification, while EN AC-46000 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4805 stainless steel and the bottom bar is EN AC-46000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
91
Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 9.0
1.0
Fatigue Strength, MPa 130
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
28
Tensile Strength: Ultimate (UTS), MPa 490
270
Tensile Strength: Yield (Proof), MPa 250
160

Thermal Properties

Latent Heat of Fusion, J/g 310
530
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1390
620
Melting Onset (Solidus), °C 1350
530
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 14
100
Thermal Expansion, µm/m-K 16
21

Otherwise Unclassified Properties

Base Metal Price, % relative 26
10
Density, g/cm3 7.9
2.8
Embodied Carbon, kg CO2/kg material 4.7
7.6
Embodied Energy, MJ/kg 66
140
Embodied Water, L/kg 180
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 150
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 17
26
Strength to Weight: Bending, points 18
33
Thermal Diffusivity, mm2/s 3.7
42
Thermal Shock Resistance, points 11
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
79.7 to 90
Carbon (C), % 0.2 to 0.5
0
Chromium (Cr), % 19 to 23
0 to 0.15
Copper (Cu), % 0
2.0 to 4.0
Iron (Fe), % 44.9 to 56.8
0 to 1.3
Lead (Pb), % 0
0 to 0.35
Magnesium (Mg), % 0
0.050 to 0.55
Manganese (Mn), % 0 to 2.0
0 to 0.55
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 23 to 27
0 to 0.55
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.0
8.0 to 11
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.2
Residuals, % 0
0 to 0.25