MakeItFrom.com
Menu (ESC)

EN 1.4806 Stainless Steel vs. AWS ER80S-B8

Both EN 1.4806 stainless steel and AWS ER80S-B8 are iron alloys. They have 55% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4806 stainless steel and the bottom bar is AWS ER80S-B8.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 6.8
19
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
75
Tensile Strength: Ultimate (UTS), MPa 470
630
Tensile Strength: Yield (Proof), MPa 250
530

Thermal Properties

Latent Heat of Fusion, J/g 320
270
Melting Completion (Liquidus), °C 1380
1460
Melting Onset (Solidus), °C 1340
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
26
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
6.5
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.4
2.0
Embodied Energy, MJ/kg 76
28
Embodied Water, L/kg 190
89

Common Calculations

PREN (Pitting Resistance) 18
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
120
Resilience: Unit (Modulus of Resilience), kJ/m3 160
720
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 16
22
Strength to Weight: Bending, points 17
21
Thermal Diffusivity, mm2/s 3.1
6.9
Thermal Shock Resistance, points 11
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.3 to 0.5
0 to 0.1
Chromium (Cr), % 16 to 18
8.0 to 10.5
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 40.4 to 48.7
85.6 to 90.8
Manganese (Mn), % 0 to 2.0
0.4 to 0.7
Molybdenum (Mo), % 0 to 0.5
0.8 to 1.2
Nickel (Ni), % 34 to 36
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 1.0 to 2.5
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.025
Residuals, % 0
0 to 0.5