MakeItFrom.com
Menu (ESC)

EN 1.4807 Stainless Steel vs. 6013 Aluminum

EN 1.4807 stainless steel belongs to the iron alloys classification, while 6013 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4807 stainless steel and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 4.5
3.4 to 22
Fatigue Strength, MPa 120
98 to 140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 480
310 to 410
Tensile Strength: Yield (Proof), MPa 250
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 1000
160
Melting Completion (Liquidus), °C 1390
650
Melting Onset (Solidus), °C 1350
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 12
150
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
120

Otherwise Unclassified Properties

Base Metal Price, % relative 39
9.5
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 6.8
8.3
Embodied Energy, MJ/kg 97
150
Embodied Water, L/kg 190
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 160
200 to 900
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 17
31 to 41
Strength to Weight: Bending, points 17
37 to 44
Thermal Diffusivity, mm2/s 3.2
60
Thermal Shock Resistance, points 12
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
94.8 to 97.8
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 17 to 20
0 to 0.1
Copper (Cu), % 0
0.6 to 1.1
Iron (Fe), % 36.6 to 46.7
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 2.0
0.2 to 0.8
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 34 to 36
0
Niobium (Nb), % 1.0 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0.6 to 1.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15