MakeItFrom.com
Menu (ESC)

EN 1.4807 Stainless Steel vs. 6023 Aluminum

EN 1.4807 stainless steel belongs to the iron alloys classification, while 6023 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4807 stainless steel and the bottom bar is 6023 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 4.5
11
Fatigue Strength, MPa 120
120 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 480
360
Tensile Strength: Yield (Proof), MPa 250
300 to 310

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1000
160
Melting Completion (Liquidus), °C 1390
640
Melting Onset (Solidus), °C 1350
580
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 12
170
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
45
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
140

Otherwise Unclassified Properties

Base Metal Price, % relative 39
11
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 6.8
8.3
Embodied Energy, MJ/kg 97
150
Embodied Water, L/kg 190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
38 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 160
670 to 690
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 17
35 to 36
Strength to Weight: Bending, points 17
40
Thermal Diffusivity, mm2/s 3.2
67
Thermal Shock Resistance, points 12
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
94 to 97.7
Bismuth (Bi), % 0
0.3 to 0.8
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0
0.2 to 0.5
Iron (Fe), % 36.6 to 46.7
0 to 0.5
Magnesium (Mg), % 0
0.4 to 0.9
Manganese (Mn), % 0 to 2.0
0.2 to 0.6
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 34 to 36
0
Niobium (Nb), % 1.0 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0.6 to 1.4
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.6 to 1.2
Residuals, % 0
0 to 0.15