MakeItFrom.com
Menu (ESC)

EN 1.4807 Stainless Steel vs. AWS ER80S-B2

Both EN 1.4807 stainless steel and AWS ER80S-B2 are iron alloys. They have 45% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4807 stainless steel and the bottom bar is AWS ER80S-B2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 4.5
21
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 75
73
Tensile Strength: Ultimate (UTS), MPa 480
620
Tensile Strength: Yield (Proof), MPa 250
540

Thermal Properties

Latent Heat of Fusion, J/g 320
260
Melting Completion (Liquidus), °C 1390
1460
Melting Onset (Solidus), °C 1350
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
40
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 39
3.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 6.8
1.6
Embodied Energy, MJ/kg 97
21
Embodied Water, L/kg 190
54

Common Calculations

PREN (Pitting Resistance) 19
3.1
Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
130
Resilience: Unit (Modulus of Resilience), kJ/m3 160
760
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 17
21
Thermal Diffusivity, mm2/s 3.2
11
Thermal Shock Resistance, points 12
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.3 to 0.5
0.070 to 0.12
Chromium (Cr), % 17 to 20
1.2 to 1.5
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 36.6 to 46.7
95.2 to 97.5
Manganese (Mn), % 0 to 2.0
0.4 to 0.7
Molybdenum (Mo), % 0 to 0.5
0.4 to 0.65
Nickel (Ni), % 34 to 36
0 to 0.2
Niobium (Nb), % 1.0 to 1.8
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 1.0 to 2.5
0.4 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.025
Residuals, % 0
0 to 0.5