MakeItFrom.com
Menu (ESC)

EN 1.4807 Stainless Steel vs. C63600 Bronze

EN 1.4807 stainless steel belongs to the iron alloys classification, while C63600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4807 stainless steel and the bottom bar is C63600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 4.5
30 to 66
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 75
42
Tensile Strength: Ultimate (UTS), MPa 480
410 to 540
Tensile Strength: Yield (Proof), MPa 250
150 to 260

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Maximum Temperature: Mechanical, °C 1000
210
Melting Completion (Liquidus), °C 1390
1030
Melting Onset (Solidus), °C 1350
980
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 12
57
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
13

Otherwise Unclassified Properties

Base Metal Price, % relative 39
30
Density, g/cm3 8.0
8.6
Embodied Carbon, kg CO2/kg material 6.8
2.8
Embodied Energy, MJ/kg 97
45
Embodied Water, L/kg 190
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
98 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 160
100 to 300
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 17
13 to 18
Strength to Weight: Bending, points 17
14 to 17
Thermal Diffusivity, mm2/s 3.2
16
Thermal Shock Resistance, points 12
15 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
3.0 to 4.0
Arsenic (As), % 0
0 to 0.15
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0
93 to 96.3
Iron (Fe), % 36.6 to 46.7
0 to 0.15
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 34 to 36
0 to 0.15
Niobium (Nb), % 1.0 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0.7 to 1.3
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5