MakeItFrom.com
Menu (ESC)

EN 1.4807 Stainless Steel vs. C96600 Copper

EN 1.4807 stainless steel belongs to the iron alloys classification, while C96600 copper belongs to the copper alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4807 stainless steel and the bottom bar is C96600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 4.5
7.0
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
52
Tensile Strength: Ultimate (UTS), MPa 480
760
Tensile Strength: Yield (Proof), MPa 250
480

Thermal Properties

Latent Heat of Fusion, J/g 320
240
Maximum Temperature: Mechanical, °C 1000
280
Melting Completion (Liquidus), °C 1390
1180
Melting Onset (Solidus), °C 1350
1100
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 12
30
Thermal Expansion, µm/m-K 15
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
4.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 39
65
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 6.8
7.0
Embodied Energy, MJ/kg 97
100
Embodied Water, L/kg 190
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
47
Resilience: Unit (Modulus of Resilience), kJ/m3 160
830
Stiffness to Weight: Axial, points 13
8.7
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 17
24
Strength to Weight: Bending, points 17
21
Thermal Diffusivity, mm2/s 3.2
8.4
Thermal Shock Resistance, points 12
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0
63.5 to 69.8
Iron (Fe), % 36.6 to 46.7
0.8 to 1.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 34 to 36
29 to 33
Niobium (Nb), % 1.0 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5