MakeItFrom.com
Menu (ESC)

EN 1.4823 Stainless Steel vs. C42200 Brass

EN 1.4823 stainless steel belongs to the iron alloys classification, while C42200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4823 stainless steel and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 3.4
2.0 to 46
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
42
Tensile Strength: Ultimate (UTS), MPa 620
300 to 610
Tensile Strength: Yield (Proof), MPa 290
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 320
200
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1400
1040
Melting Onset (Solidus), °C 1360
1020
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 17
130
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
32

Otherwise Unclassified Properties

Base Metal Price, % relative 16
29
Density, g/cm3 7.6
8.6
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 43
44
Embodied Water, L/kg 170
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 200
49 to 1460
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 26
19
Strength to Weight: Axial, points 23
9.5 to 19
Strength to Weight: Bending, points 21
11 to 18
Thermal Diffusivity, mm2/s 4.5
39
Thermal Shock Resistance, points 17
10 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 25 to 28
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 60.9 to 70.7
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 3.0 to 6.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.35
Silicon (Si), % 1.0 to 2.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.8 to 1.4
Zinc (Zn), % 0
8.7 to 13.2
Residuals, % 0
0 to 0.5