MakeItFrom.com
Menu (ESC)

EN 1.4835 Stainless Steel vs. AWS ER80S-B6

Both EN 1.4835 stainless steel and AWS ER80S-B6 are iron alloys. They have 72% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4835 stainless steel and the bottom bar is AWS ER80S-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 43
19
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
74
Tensile Strength: Ultimate (UTS), MPa 750
620
Tensile Strength: Yield (Proof), MPa 350
540

Thermal Properties

Latent Heat of Fusion, J/g 320
260
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1360
1410
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 15
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 17
4.7
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.3
1.8
Embodied Energy, MJ/kg 47
24
Embodied Water, L/kg 160
71

Common Calculations

PREN (Pitting Resistance) 24
7.1
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
110
Resilience: Unit (Modulus of Resilience), kJ/m3 310
750
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
22
Strength to Weight: Bending, points 24
21
Thermal Diffusivity, mm2/s 4.0
11
Thermal Shock Resistance, points 16
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.050 to 0.12
0 to 0.1
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 20 to 22
4.5 to 6.0
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 62 to 68.4
90.6 to 94.7
Manganese (Mn), % 0 to 1.0
0.4 to 0.7
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 10 to 12
0 to 0.6
Nitrogen (N), % 0.12 to 0.2
0
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 1.4 to 2.5
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.025
Residuals, % 0
0 to 0.5