MakeItFrom.com
Menu (ESC)

EN 1.4835 Stainless Steel vs. Nickel 890

EN 1.4835 stainless steel belongs to the iron alloys classification, while nickel 890 belongs to the nickel alloys. They have 60% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4835 stainless steel and the bottom bar is nickel 890.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 43
39
Fatigue Strength, MPa 310
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 520
400
Tensile Strength: Ultimate (UTS), MPa 750
590
Tensile Strength: Yield (Proof), MPa 350
230

Thermal Properties

Latent Heat of Fusion, J/g 320
330
Maximum Temperature: Mechanical, °C 1150
1000
Melting Completion (Liquidus), °C 1400
1390
Melting Onset (Solidus), °C 1360
1340
Specific Heat Capacity, J/kg-K 490
480
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 17
47
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 3.3
8.2
Embodied Energy, MJ/kg 47
120
Embodied Water, L/kg 160
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
180
Resilience: Unit (Modulus of Resilience), kJ/m3 310
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27
20
Strength to Weight: Bending, points 24
19
Thermal Shock Resistance, points 16
15

Alloy Composition

Aluminum (Al), % 0
0.050 to 0.6
Carbon (C), % 0.050 to 0.12
0.060 to 0.14
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 20 to 22
23.5 to 28.5
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 62 to 68.4
17.3 to 33.9
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 10 to 12
40 to 45
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0.12 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 1.4 to 2.5
1.0 to 2.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Tantalum (Ta), % 0
0.1 to 0.6
Titanium (Ti), % 0
0.15 to 0.6