MakeItFrom.com
Menu (ESC)

EN 1.4841 Stainless Steel vs. C43400 Brass

EN 1.4841 stainless steel belongs to the iron alloys classification, while C43400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4841 stainless steel and the bottom bar is C43400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 32
3.0 to 49
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
42
Shear Strength, MPa 430
250 to 390
Tensile Strength: Ultimate (UTS), MPa 650
310 to 690
Tensile Strength: Yield (Proof), MPa 260
110 to 560

Thermal Properties

Latent Heat of Fusion, J/g 330
190
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1380
1020
Melting Onset (Solidus), °C 1340
990
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
32

Otherwise Unclassified Properties

Base Metal Price, % relative 25
28
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 4.3
2.7
Embodied Energy, MJ/kg 62
44
Embodied Water, L/kg 190
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
19 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 170
57 to 1420
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 23
10 to 22
Strength to Weight: Bending, points 21
12 to 20
Thermal Diffusivity, mm2/s 4.0
41
Thermal Shock Resistance, points 15
11 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
84 to 87
Iron (Fe), % 47.1 to 55.5
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 19 to 22
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 1.5 to 2.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.4 to 1.0
Zinc (Zn), % 0
11.4 to 15.6
Residuals, % 0
0 to 0.5