MakeItFrom.com
Menu (ESC)

EN 1.4848 Stainless Steel vs. C73100 Nickel Silver

EN 1.4848 stainless steel belongs to the iron alloys classification, while C73100 nickel silver belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4848 stainless steel and the bottom bar is C73100 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 9.0
3.4 to 8.0
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
43
Tensile Strength: Ultimate (UTS), MPa 510
450 to 640
Tensile Strength: Yield (Proof), MPa 250
420 to 590

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1390
1030
Melting Onset (Solidus), °C 1340
1000
Specific Heat Capacity, J/kg-K 490
390
Thermal Conductivity, W/m-K 15
35
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 25
28
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 4.4
3.0
Embodied Energy, MJ/kg 63
49
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
21 to 35
Resilience: Unit (Modulus of Resilience), kJ/m3 150
790 to 1560
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18
15 to 21
Strength to Weight: Bending, points 18
15 to 20
Thermal Diffusivity, mm2/s 3.9
11
Thermal Shock Resistance, points 11
15 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 24 to 27
0
Copper (Cu), % 0
70.8 to 78
Iron (Fe), % 45.4 to 55.7
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 19 to 22
4.0 to 6.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
18 to 22
Residuals, % 0
0 to 0.5