MakeItFrom.com
Menu (ESC)

EN 1.4849 Stainless Steel vs. C71500 Copper-nickel

EN 1.4849 stainless steel belongs to the iron alloys classification, while C71500 copper-nickel belongs to the copper alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 22 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is EN 1.4849 stainless steel and the bottom bar is C71500 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
52
Tensile Strength: Ultimate (UTS), MPa 480
380 to 620

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Maximum Temperature: Mechanical, °C 1020
260
Melting Completion (Liquidus), °C 1390
1240
Melting Onset (Solidus), °C 1340
1170
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 12
28
Thermal Expansion, µm/m-K 15
16

Otherwise Unclassified Properties

Base Metal Price, % relative 42
41
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 7.1
5.1
Embodied Energy, MJ/kg 100
74
Embodied Water, L/kg 200
280

Common Calculations

Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 17
12 to 19
Strength to Weight: Bending, points 17
13 to 18
Thermal Diffusivity, mm2/s 3.2
7.7
Thermal Shock Resistance, points 11
12 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
63.5 to 70.6
Iron (Fe), % 32.6 to 43.5
0.4 to 1.0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 36 to 39
29 to 33
Niobium (Nb), % 1.2 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5