MakeItFrom.com
Menu (ESC)

EN 1.4855 Stainless Steel vs. 238.0 Aluminum

EN 1.4855 stainless steel belongs to the iron alloys classification, while 238.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4855 stainless steel and the bottom bar is 238.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
76
Elongation at Break, % 4.6
1.5
Fatigue Strength, MPa 120
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
28
Tensile Strength: Ultimate (UTS), MPa 500
210
Tensile Strength: Yield (Proof), MPa 250
170

Thermal Properties

Latent Heat of Fusion, J/g 320
430
Maximum Temperature: Mechanical, °C 1050
170
Melting Completion (Liquidus), °C 1400
600
Melting Onset (Solidus), °C 1350
510
Specific Heat Capacity, J/kg-K 480
840
Thermal Conductivity, W/m-K 14
100
Thermal Expansion, µm/m-K 16
21

Otherwise Unclassified Properties

Base Metal Price, % relative 34
12
Density, g/cm3 7.8
3.4
Embodied Carbon, kg CO2/kg material 5.9
7.4
Embodied Energy, MJ/kg 85
140
Embodied Water, L/kg 200
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
2.9
Resilience: Unit (Modulus of Resilience), kJ/m3 160
180
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
42
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 18
23
Thermal Diffusivity, mm2/s 3.7
37
Thermal Shock Resistance, points 11
9.1

Alloy Composition

Aluminum (Al), % 0
81.9 to 84.9
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 0
9.5 to 10.5
Iron (Fe), % 42.6 to 51.9
1.0 to 1.5
Magnesium (Mg), % 0
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 23 to 25
0
Niobium (Nb), % 0.8 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
3.6 to 4.4
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
1.0 to 1.5