MakeItFrom.com
Menu (ESC)

EN 1.4859 Stainless Steel vs. Nickel 718

EN 1.4859 stainless steel belongs to the iron alloys classification, while nickel 718 belongs to the nickel alloys. They have 71% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4859 stainless steel and the bottom bar is nickel 718.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23
12 to 50
Fatigue Strength, MPa 140
460 to 760
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
75
Tensile Strength: Ultimate (UTS), MPa 490
930 to 1530
Tensile Strength: Yield (Proof), MPa 210
510 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 310
310
Maximum Temperature: Mechanical, °C 1050
980
Melting Completion (Liquidus), °C 1410
1340
Melting Onset (Solidus), °C 1360
1260
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 13
11
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
75
Density, g/cm3 8.0
8.3
Embodied Carbon, kg CO2/kg material 6.2
13
Embodied Energy, MJ/kg 88
190
Embodied Water, L/kg 190
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
140 to 390
Resilience: Unit (Modulus of Resilience), kJ/m3 110
660 to 4560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 17
31 to 51
Strength to Weight: Bending, points 17
25 to 35
Thermal Diffusivity, mm2/s 3.4
3.0
Thermal Shock Resistance, points 11
27 to 44

Alloy Composition

Aluminum (Al), % 0
0.2 to 0.8
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0.050 to 0.15
0 to 0.080
Chromium (Cr), % 19 to 21
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 40.3 to 49
11.1 to 24.6
Manganese (Mn), % 0 to 2.0
0 to 0.35
Molybdenum (Mo), % 0 to 0.5
2.8 to 3.3
Nickel (Ni), % 31 to 33
50 to 55
Niobium (Nb), % 0.5 to 1.5
4.8 to 5.5
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0.5 to 1.5
0 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0.65 to 1.2