MakeItFrom.com
Menu (ESC)

EN 1.4859 Stainless Steel vs. C19800 Copper

EN 1.4859 stainless steel belongs to the iron alloys classification, while C19800 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4859 stainless steel and the bottom bar is C19800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
9.0 to 12
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Tensile Strength: Ultimate (UTS), MPa 490
430 to 550
Tensile Strength: Yield (Proof), MPa 210
420 to 550

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 1050
200
Melting Completion (Liquidus), °C 1410
1070
Melting Onset (Solidus), °C 1360
1050
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 13
260
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
61
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
62

Otherwise Unclassified Properties

Base Metal Price, % relative 36
30
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 6.2
2.8
Embodied Energy, MJ/kg 88
43
Embodied Water, L/kg 190
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
49 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 110
770 to 1320
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 17
14 to 17
Strength to Weight: Bending, points 17
14 to 17
Thermal Diffusivity, mm2/s 3.4
75
Thermal Shock Resistance, points 11
15 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 0
95.7 to 99.47
Iron (Fe), % 40.3 to 49
0.020 to 0.5
Magnesium (Mg), % 0
0.1 to 1.0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 31 to 33
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.040
0.010 to 0.1
Silicon (Si), % 0.5 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.1 to 1.0
Zinc (Zn), % 0
0.3 to 1.5
Residuals, % 0
0 to 0.2