MakeItFrom.com
Menu (ESC)

EN 1.4859 Stainless Steel vs. C42500 Brass

EN 1.4859 stainless steel belongs to the iron alloys classification, while C42500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4859 stainless steel and the bottom bar is C42500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
2.0 to 49
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 490
310 to 630
Tensile Strength: Yield (Proof), MPa 210
120 to 590

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1050
180
Melting Completion (Liquidus), °C 1410
1030
Melting Onset (Solidus), °C 1360
1010
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 13
120
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
28
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
29

Otherwise Unclassified Properties

Base Metal Price, % relative 36
30
Density, g/cm3 8.0
8.7
Embodied Carbon, kg CO2/kg material 6.2
2.8
Embodied Energy, MJ/kg 88
46
Embodied Water, L/kg 190
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
12 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 110
64 to 1570
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 17
9.9 to 20
Strength to Weight: Bending, points 17
12 to 19
Thermal Diffusivity, mm2/s 3.4
36
Thermal Shock Resistance, points 11
11 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 0
87 to 90
Iron (Fe), % 40.3 to 49
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 31 to 33
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.040
0 to 0.35
Silicon (Si), % 0.5 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 3.0
Zinc (Zn), % 0
6.1 to 11.5
Residuals, % 0
0 to 0.5