MakeItFrom.com
Menu (ESC)

EN 1.4865 Stainless Steel vs. C14500 Copper

EN 1.4865 stainless steel belongs to the iron alloys classification, while C14500 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4865 stainless steel and the bottom bar is C14500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 6.8
12 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Tensile Strength: Ultimate (UTS), MPa 470
220 to 330
Tensile Strength: Yield (Proof), MPa 250
69 to 260

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 1020
200
Melting Completion (Liquidus), °C 1380
1080
Melting Onset (Solidus), °C 1330
1050
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 12
360
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
94
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
95

Otherwise Unclassified Properties

Base Metal Price, % relative 33
33
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 5.8
2.6
Embodied Energy, MJ/kg 81
42
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
36 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 160
21 to 300
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 16
6.8 to 10
Strength to Weight: Bending, points 17
9.1 to 12
Thermal Diffusivity, mm2/s 3.1
100
Thermal Shock Resistance, points 11
8.0 to 12

Alloy Composition

Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
99.2 to 99.596
Iron (Fe), % 34.4 to 44.7
0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 36 to 39
0
Phosphorus (P), % 0 to 0.040
0.0040 to 0.012
Silicon (Si), % 1.0 to 2.5
0
Sulfur (S), % 0 to 0.030
0
Tellurium (Te), % 0
0.4 to 0.7