MakeItFrom.com
Menu (ESC)

EN 1.4865 Stainless Steel vs. C84400 Valve Metal

EN 1.4865 stainless steel belongs to the iron alloys classification, while C84400 valve metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4865 stainless steel and the bottom bar is C84400 valve metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 6.8
19
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
39
Tensile Strength: Ultimate (UTS), MPa 470
230
Tensile Strength: Yield (Proof), MPa 250
110

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Maximum Temperature: Mechanical, °C 1020
160
Melting Completion (Liquidus), °C 1380
1000
Melting Onset (Solidus), °C 1330
840
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 12
72
Thermal Expansion, µm/m-K 15
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
16
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
17

Otherwise Unclassified Properties

Base Metal Price, % relative 33
29
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 5.8
2.8
Embodied Energy, MJ/kg 81
46
Embodied Water, L/kg 200
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
36
Resilience: Unit (Modulus of Resilience), kJ/m3 160
58
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 16
7.2
Strength to Weight: Bending, points 17
9.4
Thermal Diffusivity, mm2/s 3.1
22
Thermal Shock Resistance, points 11
8.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
78 to 82
Iron (Fe), % 34.4 to 44.7
0 to 0.4
Lead (Pb), % 0
6.0 to 8.0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 36 to 39
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 1.0 to 2.5
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
2.3 to 3.5
Zinc (Zn), % 0
7.0 to 10
Residuals, % 0
0 to 0.7