MakeItFrom.com
Menu (ESC)

EN 1.4869 Casting Alloy vs. AWS ER80S-B8

EN 1.4869 casting alloy belongs to the nickel alloys classification, while AWS ER80S-B8 belongs to the iron alloys. They have a modest 28% of their average alloy composition in common, which, by itself, doesn't mean much. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4869 casting alloy and the bottom bar is AWS ER80S-B8.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 5.7
19
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
75
Tensile Strength: Ultimate (UTS), MPa 540
630
Tensile Strength: Yield (Proof), MPa 310
530

Thermal Properties

Latent Heat of Fusion, J/g 330
270
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 10
26
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 70
6.5
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 7.7
2.0
Embodied Energy, MJ/kg 110
28
Embodied Water, L/kg 300
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26
120
Resilience: Unit (Modulus of Resilience), kJ/m3 230
720
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 18
22
Strength to Weight: Bending, points 17
21
Thermal Diffusivity, mm2/s 2.6
6.9
Thermal Shock Resistance, points 14
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.45 to 0.55
0 to 0.1
Chromium (Cr), % 24 to 26
8.0 to 10.5
Cobalt (Co), % 14 to 16
0
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 11.4 to 23.6
85.6 to 90.8
Manganese (Mn), % 0 to 1.0
0.4 to 0.7
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 33 to 37
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 1.0 to 2.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.025
Tungsten (W), % 4.0 to 6.0
0
Residuals, % 0
0 to 0.5