MakeItFrom.com
Menu (ESC)

EN 1.4872 Stainless Steel vs. EN 2.4816 Nickel

EN 1.4872 stainless steel belongs to the iron alloys classification, while EN 2.4816 nickel belongs to the nickel alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4872 stainless steel and the bottom bar is EN 2.4816 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
170
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
34
Fatigue Strength, MPa 410
200
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
74
Shear Strength, MPa 620
470
Tensile Strength: Ultimate (UTS), MPa 950
700
Tensile Strength: Yield (Proof), MPa 560
270

Thermal Properties

Latent Heat of Fusion, J/g 300
310
Maximum Temperature: Mechanical, °C 1150
1150
Melting Completion (Liquidus), °C 1390
1370
Melting Onset (Solidus), °C 1340
1320
Specific Heat Capacity, J/kg-K 490
460
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 17
55
Density, g/cm3 7.6
8.5
Embodied Carbon, kg CO2/kg material 3.3
9.0
Embodied Energy, MJ/kg 47
130
Embodied Water, L/kg 180
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
190
Resilience: Unit (Modulus of Resilience), kJ/m3 780
190
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
23
Strength to Weight: Axial, points 35
23
Strength to Weight: Bending, points 28
21
Thermal Diffusivity, mm2/s 3.9
3.8
Thermal Shock Resistance, points 21
20

Alloy Composition

Aluminum (Al), % 0
0 to 0.3
Carbon (C), % 0.2 to 0.3
0.050 to 0.1
Chromium (Cr), % 24 to 26
14 to 17
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 54.2 to 61.6
6.0 to 10
Manganese (Mn), % 8.0 to 10
0 to 1.0
Nickel (Ni), % 6.0 to 8.0
72 to 80
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0
0 to 0.3