MakeItFrom.com
Menu (ESC)

EN 1.4872 Stainless Steel vs. C61000 Bronze

EN 1.4872 stainless steel belongs to the iron alloys classification, while C61000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4872 stainless steel and the bottom bar is C61000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
29 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
42
Shear Strength, MPa 620
280 to 300
Tensile Strength: Ultimate (UTS), MPa 950
390 to 460
Tensile Strength: Yield (Proof), MPa 560
150 to 190

Thermal Properties

Latent Heat of Fusion, J/g 300
220
Maximum Temperature: Mechanical, °C 1150
210
Melting Completion (Liquidus), °C 1390
1040
Melting Onset (Solidus), °C 1340
990
Specific Heat Capacity, J/kg-K 490
420
Thermal Conductivity, W/m-K 15
69
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
15
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
16

Otherwise Unclassified Properties

Base Metal Price, % relative 17
29
Density, g/cm3 7.6
8.5
Embodied Carbon, kg CO2/kg material 3.3
3.0
Embodied Energy, MJ/kg 47
49
Embodied Water, L/kg 180
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
110 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 780
100 to 160
Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 26
19
Strength to Weight: Axial, points 35
13 to 15
Strength to Weight: Bending, points 28
14 to 16
Thermal Diffusivity, mm2/s 3.9
19
Thermal Shock Resistance, points 21
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
6.0 to 8.5
Carbon (C), % 0.2 to 0.3
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
90.2 to 94
Iron (Fe), % 54.2 to 61.6
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 8.0 to 10
0
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5