MakeItFrom.com
Menu (ESC)

EN 1.4872 Stainless Steel vs. C67400 Bronze

EN 1.4872 stainless steel belongs to the iron alloys classification, while C67400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4872 stainless steel and the bottom bar is C67400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
22 to 28
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 79
41
Shear Strength, MPa 620
310 to 350
Tensile Strength: Ultimate (UTS), MPa 950
480 to 610
Tensile Strength: Yield (Proof), MPa 560
250 to 370

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1150
130
Melting Completion (Liquidus), °C 1390
890
Melting Onset (Solidus), °C 1340
870
Specific Heat Capacity, J/kg-K 490
400
Thermal Conductivity, W/m-K 15
100
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
23
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
26

Otherwise Unclassified Properties

Base Metal Price, % relative 17
23
Density, g/cm3 7.6
7.9
Embodied Carbon, kg CO2/kg material 3.3
2.8
Embodied Energy, MJ/kg 47
48
Embodied Water, L/kg 180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 780
300 to 660
Stiffness to Weight: Axial, points 15
7.5
Stiffness to Weight: Bending, points 26
20
Strength to Weight: Axial, points 35
17 to 22
Strength to Weight: Bending, points 28
17 to 20
Thermal Diffusivity, mm2/s 3.9
32
Thermal Shock Resistance, points 21
16 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0.5 to 2.0
Carbon (C), % 0.2 to 0.3
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
57 to 60
Iron (Fe), % 54.2 to 61.6
0 to 0.35
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 8.0 to 10
2.0 to 3.5
Nickel (Ni), % 6.0 to 8.0
0 to 0.25
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0.5 to 1.5
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
31.1 to 40
Residuals, % 0
0 to 0.5