MakeItFrom.com
Menu (ESC)

EN 1.4874 Stainless Steel vs. C82600 Copper

EN 1.4874 stainless steel belongs to the iron alloys classification, while C82600 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4874 stainless steel and the bottom bar is C82600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 6.7
1.0 to 20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
46
Tensile Strength: Ultimate (UTS), MPa 480
570 to 1140
Tensile Strength: Yield (Proof), MPa 360
320 to 1070

Thermal Properties

Latent Heat of Fusion, J/g 300
240
Maximum Temperature: Mechanical, °C 1150
300
Melting Completion (Liquidus), °C 1450
950
Melting Onset (Solidus), °C 1400
860
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 15
17

Otherwise Unclassified Properties

Density, g/cm3 8.4
8.7
Embodied Carbon, kg CO2/kg material 7.6
11
Embodied Energy, MJ/kg 110
180
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
11 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 310
430 to 4690
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 16
18 to 36
Strength to Weight: Bending, points 16
17 to 28
Thermal Diffusivity, mm2/s 3.3
37
Thermal Shock Resistance, points 11
19 to 39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.3 to 2.6
Carbon (C), % 0.35 to 0.65
0
Chromium (Cr), % 19 to 22
0 to 0.1
Cobalt (Co), % 18.5 to 22
0.35 to 0.65
Copper (Cu), % 0
94.9 to 97.2
Iron (Fe), % 23 to 38.9
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 18 to 22
0 to 0.2
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.2 to 0.35
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5