MakeItFrom.com
Menu (ESC)

EN 1.4877 Stainless Steel vs. N08320 Stainless Steel

Both EN 1.4877 stainless steel and N08320 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 88% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4877 stainless steel and the bottom bar is N08320 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 36
40
Fatigue Strength, MPa 170
190
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 79
78
Shear Strength, MPa 420
400
Tensile Strength: Ultimate (UTS), MPa 630
580
Tensile Strength: Yield (Proof), MPa 200
220

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Corrosion, °C 560
430
Maximum Temperature: Mechanical, °C 1150
1100
Melting Completion (Liquidus), °C 1400
1400
Melting Onset (Solidus), °C 1360
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 12
12
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 37
28
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 6.2
4.9
Embodied Energy, MJ/kg 89
69
Embodied Water, L/kg 220
200

Common Calculations

PREN (Pitting Resistance) 28
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
180
Resilience: Unit (Modulus of Resilience), kJ/m3 100
120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
20
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 3.2
3.3
Thermal Shock Resistance, points 15
13

Alloy Composition

Aluminum (Al), % 0 to 0.025
0
Carbon (C), % 0.040 to 0.080
0 to 0.050
Cerium (Ce), % 0.050 to 0.1
0
Chromium (Cr), % 26 to 28
21 to 23
Iron (Fe), % 36.4 to 42.3
40.4 to 50
Manganese (Mn), % 0 to 1.0
0 to 2.5
Nickel (Ni), % 31 to 33
25 to 27
Niobium (Nb), % 0.6 to 1.0
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030