MakeItFrom.com
Menu (ESC)

EN 1.4889 Cast Nickel vs. 336.0 Aluminum

EN 1.4889 cast nickel belongs to the nickel alloys classification, while 336.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4889 cast nickel and the bottom bar is 336.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
75
Elongation at Break, % 3.4
0.5
Fatigue Strength, MPa 110
80 to 93
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
28
Tensile Strength: Ultimate (UTS), MPa 500
250 to 320
Tensile Strength: Yield (Proof), MPa 270
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 350
570
Maximum Temperature: Mechanical, °C 1160
210
Melting Completion (Liquidus), °C 1360
570
Melting Onset (Solidus), °C 1320
540
Specific Heat Capacity, J/kg-K 480
890
Thermal Expansion, µm/m-K 14
19

Otherwise Unclassified Properties

Base Metal Price, % relative 55
11
Density, g/cm3 7.9
2.8
Embodied Carbon, kg CO2/kg material 8.5
7.9
Embodied Energy, MJ/kg 120
140
Embodied Water, L/kg 280
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
1.1 to 1.6
Resilience: Unit (Modulus of Resilience), kJ/m3 180
250 to 580
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 18
25 to 32
Strength to Weight: Bending, points 18
32 to 38
Thermal Shock Resistance, points 13
12 to 16

Alloy Composition

Aluminum (Al), % 0
79.1 to 85.8
Carbon (C), % 0.35 to 0.45
0
Chromium (Cr), % 32.5 to 37.5
0
Copper (Cu), % 0
0.5 to 1.5
Iron (Fe), % 10.5 to 21.2
0 to 1.2
Magnesium (Mg), % 0
0.7 to 1.3
Manganese (Mn), % 1.0 to 1.5
0 to 0.35
Nickel (Ni), % 42 to 46
2.0 to 3.0
Niobium (Nb), % 1.5 to 2.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.5 to 2.0
11 to 13
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35