MakeItFrom.com
Menu (ESC)

EN 1.4901 Stainless Steel vs. ASTM A372 Grade J Steel

Both EN 1.4901 stainless steel and ASTM A372 grade J steel are iron alloys. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4901 stainless steel and the bottom bar is ASTM A372 grade J steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
17 to 22
Fatigue Strength, MPa 310
310 to 570
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 460
410 to 630
Tensile Strength: Ultimate (UTS), MPa 740
650 to 1020
Tensile Strength: Yield (Proof), MPa 490
430 to 850

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 650
420
Melting Completion (Liquidus), °C 1490
1460
Melting Onset (Solidus), °C 1450
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
44
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.4
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.5
Embodied Energy, MJ/kg 40
20
Embodied Water, L/kg 89
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
130 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 620
500 to 1930
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26
23 to 36
Strength to Weight: Bending, points 23
21 to 29
Thermal Diffusivity, mm2/s 6.9
12
Thermal Shock Resistance, points 23
19 to 30

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0.35 to 0.5
Chromium (Cr), % 8.5 to 9.5
0.8 to 1.2
Iron (Fe), % 85.8 to 89.1
96.7 to 97.8
Manganese (Mn), % 0.3 to 0.6
0.75 to 1.1
Molybdenum (Mo), % 0.3 to 0.6
0.15 to 0.25
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.015
Silicon (Si), % 0 to 0.5
0.15 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0