MakeItFrom.com
Menu (ESC)

EN 1.4903 Stainless Steel vs. EN 1.4477 Stainless Steel

Both EN 1.4903 stainless steel and EN 1.4477 stainless steel are iron alloys. They have 71% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4903 stainless steel and the bottom bar is EN 1.4477 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 20 to 21
22 to 23
Fatigue Strength, MPa 320 to 330
420 to 490
Impact Strength: V-Notched Charpy, J 42 to 46
110
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 75
81
Shear Strength, MPa 420
550 to 580
Tensile Strength: Ultimate (UTS), MPa 670 to 680
880 to 930
Tensile Strength: Yield (Proof), MPa 500
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Corrosion, °C 380
460
Maximum Temperature: Mechanical, °C 650
1100
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
13
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 4.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
20
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.7
Embodied Energy, MJ/kg 36
52
Embodied Water, L/kg 88
190

Common Calculations

PREN (Pitting Resistance) 13
41
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 650
940 to 1290
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
31 to 33
Strength to Weight: Bending, points 22
26 to 27
Thermal Diffusivity, mm2/s 7.0
3.5
Thermal Shock Resistance, points 23
23 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.12
0 to 0.030
Chromium (Cr), % 8.0 to 9.5
28 to 30
Copper (Cu), % 0 to 0.3
0 to 0.8
Iron (Fe), % 87.1 to 90.5
56.6 to 63.6
Manganese (Mn), % 0.3 to 0.6
0.8 to 1.5
Molybdenum (Mo), % 0.85 to 1.1
1.5 to 2.6
Nickel (Ni), % 0 to 0.4
5.8 to 7.5
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0.3 to 0.4
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.015
Vanadium (V), % 0.18 to 0.25
0