MakeItFrom.com
Menu (ESC)

EN 1.4903 Stainless Steel vs. EN 1.4595 Stainless Steel

Both EN 1.4903 stainless steel and EN 1.4595 stainless steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4903 stainless steel and the bottom bar is EN 1.4595 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20 to 21
29
Fatigue Strength, MPa 320 to 330
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
76
Shear Strength, MPa 420
310
Tensile Strength: Ultimate (UTS), MPa 670 to 680
470
Tensile Strength: Yield (Proof), MPa 500
250

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 380
460
Maximum Temperature: Mechanical, °C 650
810
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
30
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 4.0
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
10
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.4
Embodied Energy, MJ/kg 36
34
Embodied Water, L/kg 88
110

Common Calculations

PREN (Pitting Resistance) 13
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 650
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
17
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 7.0
8.1
Thermal Shock Resistance, points 23
17

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.12
0 to 0.020
Chromium (Cr), % 8.0 to 9.5
14 to 16
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 87.1 to 90.5
81.3 to 85.8
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0.2 to 0.6
Nitrogen (N), % 0.030 to 0.070
0 to 0.020
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Vanadium (V), % 0.18 to 0.25
0