MakeItFrom.com
Menu (ESC)

EN 1.4903 Stainless Steel vs. SAE-AISI 52100 Steel

Both EN 1.4903 stainless steel and SAE-AISI 52100 steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4903 stainless steel and the bottom bar is SAE-AISI 52100 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20 to 21
10 to 20
Fatigue Strength, MPa 320 to 330
250 to 340
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
72
Shear Strength, MPa 420
370 to 420
Tensile Strength: Ultimate (UTS), MPa 670 to 680
590 to 2010
Tensile Strength: Yield (Proof), MPa 500
360 to 560

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 650
430
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
47
Thermal Expansion, µm/m-K 11
12 to 13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 4.0
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
2.4
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.5
Embodied Energy, MJ/kg 36
20
Embodied Water, L/kg 88
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
54 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 650
350 to 840
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
21 to 72
Strength to Weight: Bending, points 22
20 to 45
Thermal Diffusivity, mm2/s 7.0
13
Thermal Shock Resistance, points 23
19 to 61

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.12
0.93 to 1.1
Chromium (Cr), % 8.0 to 9.5
1.4 to 1.6
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 87.1 to 90.5
96.5 to 97.3
Manganese (Mn), % 0.3 to 0.6
0.25 to 0.45
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.5
0.15 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.015
Vanadium (V), % 0.18 to 0.25
0